Notons la coordinence particulière du sélénium (+IV); la paire non liée $4s^2$ joue un rôle stéréochimique important. Elle complète 'l'environnement' du sélénium (+IV) celui-ci se trouvant en fait à l'intérieur d'un tétraèdre dont la base est formée par les trois atomes d'oxygène le doublet occupant l'apex.

La détermination précise de la structure originale de $ZnSe_2O_5$ apporte des éléments nouveaux et importants dans le domaine de la cristallochimie du sélénium

(+IV), notamment sur la liaison Se–O et la disposition des motifs $(Se_2O_5)^{2-}$.

Références

MCMASTER, W. H., KERR DEL GRANDE, N., MALLET, J. H. & HUBBEL, J. H. (1969). N.B.S. Compilation of X-ray Cross Sections, UCRL-50174, Sec. II, Rev. 1.

MEUNIER, G., BERTAUD, M. & GALY, J. (1974). Acta Cryst. B30, 2834–2839.

Acta Cryst. (1974). B30, 2843

The Crystal and Molecular Structure of a Germanium-Hemiporphyrazine

BY HANS-JÜRGEN HECHT AND PETER LUGER

Institut für Kristallographie der FU Berlin, 1 Berlin-33, Takustrasse 6, Germany (BRD)

(Received 12 November 1973; accepted 11 July 1974)

Hemiporphyrazine-germanium-diethylene glycol monoethyl ether crystallizes in space group *Pbca* with lattice constants a=23.067, b=17.360 and c=7.831 Å with four molecules in the unit cell. The phase problem was solved by the heavy-atom method. Diffractometer data were refined to a final residual R=3.7%. The hemiporphyrazine system is completely planar. The results of the structure analysis lead to the assumption of a superposition of three resonance forms of the molecule.

Introduction

The title compound was synthesized by Meyer & Wöhrle (1972) as a part of extensive chemical investigations on macrocycles. Recently the structure of the hemiporphyrazine system has been discussed on the basis of n.m.r. work (Esposito, Sutton & Kenney, 1967); X-ray data of this system are scarcely known. The paper of Speakman (1953) reports a structure determination of a nickel complex with hemiporphyrazine.

The planarity and aromaticity of this system is of special interest in comparison with the analogous system of the phthalocyanines. To obtain this and further information we found it useful to carry out a threedimensional X-ray structure analysis of the germanium derivative of the hemiporphyrazine.

Experimental and structure determination

The compound crystallizes from ethylene glycol monoethyl ether as small, dark-blue needles. The space group was determined by oscillation- and Weissenberg photographs. From the orthorhombic symmetry and the systematically absent reflexions hk0 for h=2n+1, 0kl for k=2n+1 and h0l for l=2n+1, it was assumed to be *Pbca*.

X-ray measurements were carried out with an automatic single-crystal diffractometer (Siemens AED) and Ni-filtered Cu $K\alpha$ radiation ($\lambda = 1.5405$ Å). For the determination of precise lattice constants the scattering

angles of high-order axial reflexions were measured using a step-scan method with preset time per step. The intensities of reflexions with $4.5^{\circ} \le \theta \le 71^{\circ}$ were collected by the 'five-value' method (*Siemens AED-Handbuch*, 1966).

Because of the geometry of the diffractometer, a large number of reflexions with high θ and χ had an insufficient signal-to-noise ratio caused by back-scattering of the primary beam. We decided, therefore, to include of the 3123 reflexions measured only the 2571 reflexions with $l \le 6$ in the data set. 916 had an intensity less than twice the statistical error and were coded as unobserved. The most important crystallographic data are given in Table 1.

Table 1. Crystallographic data

Hemiporphyrazine-germanium-diethylene glycol monoethyl ether

	(Ge-hp)
Chemical formula	$C_{34}H_{32}N_8O_4Ge$
Molecular weight	688.6
Cell parameters	a = 23.067 (5) Å
-	b = 17.360(5)
	c = 7.831(4)
Cell volume	$V = 3136 \text{ Å}^3$
Density	$\rho \exp = 1.46 (1) \text{ g cm}^{-3}$
	ϱ X-ray = 1.458 (1) g cm ⁻³
Space group: ort	horhombic, Pbca
Four molecules p	per unit cell
Linear absorption	n factor $\mu = 20.7 \text{ cm}^{-1}$ (Cu Ka)
Crystal dimensio	ns: $0.08 \times 0.05 \times 0.5$ mm

Table 2. Fractional atomic coordinates and thermal parameters $(U \times 10^2)$

	x	У	Z	U_{11}	U_{22}	U_{33}	U_{12}	U_{13}	U_{23}
Ge	0.0	1.0	0.0	3.87 (2)	3.84 (2)	3.83 (6)	-0.31(3)	-0.10(3)	-0.11(3)
N(1)	0.0346 (1)	0.9202(2)	0.1882 (4)	4.4 (2)	4·1 (1)	4.0 (2)	0·1 (1)	-0.5(1)	0·1 (Ì)
N(2)	-0.0449 (1)	0.9386 (2)	0.3901 (4)	6.0 (2)	5.7 (2)	4.4 (2)	0.2(2)	0.5(2)	0.9 (2)
N(3)	-0.0662(1)	1.0191 (1)	0.1455 (4)	4.0 (1)	4.3 (2)	4.1 (2)	-0.1(1)	0.2(1)	0.1 (1)
N(4)	0.1195 (1)	0.8866 (2)	0.0176 (4)	5.3 (2)	6.4 (2)	4.1 (2)	1.2(1)	-0.6(2)	0.1(2)
C(1)	0.0850 (2)	0.8804 (2)	0.1611 (5)	5.2 (2)	4.3 (2)	4.1 (3)	0.1 (2)	-0.8(2)	-0.2(2)
C(2)	0.1064 (2)	0.8282 (2)	0.2799 (6)	6.6 (3)	5.1 (2)	5.4 (3)	1.3 (2)	-1.3 (2)	-0.2(2)
C(3)	0.0785 (2)	0.8150 (2)	0.4291 (6)	8.1 (3)	6.1 (3)	5.6 (3)	0.7 (2)	-1.4(2)	1.7 (2)
C(4)	0.0291 (2)	0.8545 (2)	0.4606 (5)	7.3 (3)	6.2 (2)	5.1 (3)	-0.2(2)	0.1(2)	1.5 (2)
C(5)	0.0068 (2)	0.9061 (2)	0.3396 (5)	5.9 (2)	4.8 (2)	3.9 (2)	-0.5(2)	-0.5(2)	0.6 (2)
C(6)	-0·0749 (1)	0.9868 (2)	0.3052(5)	5.1 (2)	4.7 (2)	4.4 (3)	-0.8(2)	0.5 (2)	-0.2(2)
C(7)	-0.1305 (2)	1.0173 (2)	0.3734 (5)	5.6 (2)	5.3 (2)	4.7 (3)	-0.6(2)	1.1 (2)	-1.0 (2)
C(8)	-0·1514 (1)	1.0686 (2)	0.2560 (5)	4.3 (2)	6.0 (2)	5.2 (3)	-0.3(2)	0.4 (2)	-0.9(2)
C(9)	-0·1109 (1)	1.0705 (2)	0.1119 (5)	4.1 (2)	5.1 (2)	4.9 (3)	-0.2(2)	-0.2(2)	-0.6(2)
C(10)	-0.1594 (2)	1.0019 (3)	0.5251 (6)	8.1 (2)	6.5 (2)	6.2 (3)	-0.1(3)	2.1 (2)	0.2(2)
C(11)	-0.2102(2)	1.0405 (3)	0.5541 (7)	8.3 (3)	7.4 (3)	8.1 (4)	-0.9(3)	4.1 (3)	-1.7(3)
C(12)	-0.2311(2)	1.0927 (3)	0.4368 (7)	5.7 (3)	9.0 (4)	9.2 (4)	0.1(3)	1.8 (3)	-2.6(3)
C(13)	-0.2026 (2)	1.1082 (3)	0.2860 (6)	5.2 (2)	8.9 (3)	6.2 (3)	1.2 (2)	0.0 (2)	-1.0(2)
O(1)	0.0301 (9)	1.0797 (1)	0.1114 (3)	5.0 (1)	4.7 (1)	4.2 (2)	-1.1(1)	0.2 (1)	-0.5(1)
C(14)	0.0863 (2)	1.1111 (3)	0.0724 (8)	6.0 (3)	6.5 (3)	7.8 (4)	-1.9(2)	1.1(3)	-1.7(2)
C(15)	0.0948 (2)	1.1859 (3)	0.1630 (8)	5.9 (3)	5.7 (3)	8.0 (4)	-1.2(2)	1.2(3)	-1.5(2)
O(2)	0.1508 (1)	1.2124 (2)	0.1272 (4)	6.0 (2)	6.2 (2)	10.1 (1)	-2.5(1)	$2 \cdot 2 (2)$	-2.7(2)
C(16)	0.1608(2)	1.2899 (3)	0.1670 (9)	7.9 (3)	5.4 (3)	9 ∙0 (4)	-1.9(2)	-0.3(3)	-1.0(3)
C (17)	0.2204 (3)	1.3108 (5)	0.1253 (1)	10.1 (5)	8.8 (5)	14.5 (8)	- 5.9 (4)	$2 \cdot 2(5)$	-2.5(5)
								• •	• •

Table 2 (cont.)

	x	У	Z	U
H(21)	0.140 (1)	0.807(2)	0.246 (4)	6 (1)
H(31)	0.092 (2)	0.785(2)	0.511 (6)	10 (l)
H(41)	0.109 (2)	0.854 (2)	0.557 (4)	9 (1)
H(101)	-0.143(2)	0.967 (2)	0.611 (5)	9 (1)
H(111)	-0.232(2)	1.029 (2)	0.652 (5)	9 (1)
H(121)	-0.268(2)	1.117 (3)	0.458 (5)	10 (1)
H(131)	-0.215(1)	1.140 (2)	0.194 (5)	7 (1)
H(141)	0.120 (2)	1.077 (3)	0.087 (6)	12 (2)
H(142)	0.091 (2)	1.119 (3)	-0.055(7)	11 (2)
H(151)	0.062(2)	1.225(2)	0.147 (6)	8 (1)
H(152)	0.088(2)	1.174 (3)	0.293 (8)	11 (2)
H(161)	0.125 (3)	1.321 (3)	0.099 (7)	13 (2)
H(162)	0.157 (3)	1.300 (4)	0.278 (9)	16 (3)
H(171)	0.221(5)	1.303 (6)	0.02(2)	30 (7)
H(172)	0.253 (4)	1.275 (5)	0.16 (1)	22 (4)
H(173)	0.227(3)	1.356 (4)	0.141(8)	13 (2)

Relative structure factors were calculated from the intensity data with the usual corrections for Lorentz and polarization effects. An absorption correction was not applied.

The dimensions of the unit cell and the experimentally measured density indicated four molecules per unit cell. Because of the eightfold symmetry in this space group the molecule was assumed to be centrosymmetric with the germanium atom as symmetry centre.

On this assumption a Fourier synthesis was calculated with positive signs for all structure factors. This synthesis showed all nitrogen atoms of the system. After parameter refinements and Fourier synthesis calculations the complete molecule (except for hydrogen positions) was determined.

After isotropic and anisotropic refinements with the least-squares program *ORFLS* of the X-RAY 70 system the *R* value was $7\cdot 2\%$.

The hydrogen atoms were located from difference

syntheses and included in further refinements with isotropic temperature factors. After introduction of anomalous dispersion factors $\Delta f' = -1.3$ and $\Delta f'' = 1.0$ for the Ge atom (*International Tables for X-ray Crystallography*, 1962) and refinement of all parameters the *R* value was 3.8%. At this point a power-series type weighting scheme, $w = A + BF_{obs} + CF_{obs}^2 + DF_{obs}^3$, was applied for all reflexions, with A = 5.45, B = -0.292, $C = 6.1 \times 10^{-3}$, $D = -3.5 \times 10^{-5}$.

Analysis of several weighting schemes showed this power-series type scheme to be the most suitable for the distribution of $\bar{w}(\Delta F)^2$ versus F_{obs} .

After three cycles of refinement including all atom parameters convergence was obtained [maximum shift/error: 1.6, maximum shift 0.008 Å for the y coordinate of H(101)]. The final conventional R value was 3.7 % for the observed reflexions, the final weighted R value was 3.2 %. The expression used for calculation of R values was $\sum w ||F_c| - |F_o|| / \sum w |F_o|$. The final Fourier difference synthesis showed no peaks higher than 0.2 e Å⁻³ except small regions with 0.3 e Å⁻³ in the neighbourhood of the Ge atoms. Scattering factors for all atom types were taken from International Tables for X-ray Crystallography (1962). In the final refinement the programs of the X-RAY system (1972) were used. Table 2 gives the final atom parameters, and in Table 3 calculated and observed structure factors are listed.

Discussion

In Fig. 1 a stereoscopic pair of drawings of the complete molecule is given and Fig. 2 shows the hemiporphyrazine skeleton including bond lengths and angles of the heavy atoms (standard deviations in parentheses). The mean C-H distances are 0.95 with mean standard deviations of 0.06 Å.

Table 3. Observed and calculated structure factors

The columns are: H, $10|F_o|$, $10F_c$.

Table 3 (cont.)

87 45 44 43 42 11 12 13 14 15 16 17 18 20 21 74 52* 52* 90 111 78 135 148 49* 47* 47* 45* 43* 52* 152 51* 83 50* 7* *8* *5* *5* *3* 25 164 -89 27 -81 -22 81 -00 19 55 49 315 616 651 239 606 51 520 484 175 362 85 188 51 247 487 487 217 487 487 177 108 216 176 305 534 119 206 52* 118 52* 128 50* 75 48* 75 48* 72 91 42* -17 35 -99 101 -6 -4 118 23 84 -17 78 62 2007 599 -599 -587 -1121 -13 -57 -54 -54 -54 -54 -54 -54 -54 56 34 58 -96 105 -73 130 -70 135 -61 34 -11 -7 38 11 104 -105 17 107 -107 -21 -08 23 36 15 36 -112 -105 -53 -53 -136 -138 -138 -138 -108 87 80 120 5 105 17 107 159 531 100 531 103 156 101 85 96 109 47* 102 *3* -35 176 -34 -33 -33 -33 -33 53* 101 96 52* 51* 126 85 85 85 81 H,9,5 10 112 13 15 16 17 18 920 3 4 5 6 7 8 4 10 111 123 14 15 8 9 10 11 12 13 14 15 10 7 8 9 10 11 2 13 14 15 167 18 19 20 7 8 9 10 11 12 13 14 15 16 17 567890112345167890122223 5 67 8 9 10 11 12 13 14 15 16 17 18 233 45* 225 45* 164 44* 160 42* 228 225 176 227 170 170 218 49 169 252 198 138 114 100 165 +3 012345678901 185 3+0 -143 +000 -3022 346 -79 213 1111 104 +022 210 301 -15 210 301 -15 210 -12 241 -12 241 -12 25 25 200 13 169 -5 253 -7 186 127 102 107 167 -0 1249 -70 160 90 617 1137 54 90 1137 -54 90 -1137 -54 -1137 -55 -1137 -54 -1137 -55 -1137 -55 -1137 -55 -1137 -55 -1137 -55 -1137 -55 -1137 -57 -11137 -57 -11137 -57 -11137 -57 -11137 -123+5678901123+5678901123 123456789011123145161718922122 H+12+6 5315 326 269 -2000 -154 869 187 341 341 341 267 145 -51 1928 189 299 52* 194 194 194 151 579 27* 95 162 529 50* 358 478 116 H.18.5 193 51 296 77 378 51 288 50 178 50 178 228 47 228 47 185 204 43 161 -13 291 59 381 -38 292 3161 10 219 30 162 27 207 -40 1234567890112345678901 1123456789021 H.10.6 0123*5 6789 01123*5 H+15+5 639 107 490 114 222 213 273 262 265 276 52 260 50 247 194 43 653 472 -109 213 -217 265 1042 279 2612 279 2612 271 2612 273 173 H+11+5 +6 +18 +5 26 0123 + 567 89011123 165 1789 101123 10 11 12 13 14 15 16 17 18 10 22 22 22 526 53* 282 21* *06 53* 282 21* *06 53* 259 259 233 *09 233 *09 233 *09 233 *09 233 *09 233 *09 233 *09 233 *09 233 261 75 297 238 *0* 167 *8* 209 *6* 179 *6* 179 *6* 167 H+16+5 259 67 296 14 225 -43 166 -21 201 -30 189 155 H.13.5 1234567890111213 278 -53 289 -20 340 157 378 42 300 1478 101 272 52 2122 -28 175 -16 121 294 53* 291 53* 387 53* 307 135 180 115 206 50* 203 48* 175 48* 116 H+15.6 123+56789011234567890111234567890 147 -0 375 -38 383 43 250 19 202 68 204 -05 182 -21 200 140 52* 370 53* 367 53* 193 50* 216 67 173* 209 43* 1234567890112131516 H+64,5 395 494 106 101 215 125 125 125 173 51 132 132 190 128 12345678 67 19 25 25 30 25 30 25 30 25 640 87 641 67 435 -30 216 387 302 403 504 35 355 77 0123+567890011234 H.8.5 501 -98 598 -173 471 -104 322 121 373 520 155 530 140 530 550 550 376 -26 230 159 -34 156 1 89 -86 H+13+6 510 -116 116 -188 120 -75 -32 -101 123456789 94 122 193 127 52 52 92 50* 102 50* 153 *9* 157 •7• 132 •6• 127 •0• +8+ 70 88 47+ 97 -77 23 105 -49 155 -1 H,7,6 147 -200 -116 175 -55 52 76 73 -1 H+10+5 -158 -291 95 -166 123 **11*6 H.9.6 1. 306 00 0 255 1 85 222 1 114 -100 - 305

The bond Ge–O(1) is almost normal to the plane of the molecule and the angle O(1)–Ge–N(1) is 90.3° and O(1)–Ge–N(3) is 85.2° (1).

The hemiporphyrazine system is completely planar, with mean deviations from the least-squares plane of 0.02 Å. The maximum deviation is 0.03 Å of atom C(4). This result does not agree with previous studies of this system (Speakman, 1953; Esposito, Sutton & Kenney, 1967).

In the plane of the four neighbouring nitrogen atoms the octahedral coordination of the central Ge atom is distorted to a rectangular arrangement, with bonding distances of 2.175 (3) and 1.934 (3) Å between the germanium atom and the pyridine-nitrogen and the isoindole-nitrogen atoms respectively. For comparison of these bond lengths only data of the homologous macrocyclic complexes of tin were available. A comparison of several Sn^{IV}-macrocycles (Cullen & Meyer, 1973) shows Sn–N bond distances in the range 2.051 (2) to 2.35 (2) Å with a normal Sn–N bond length of about 2.18 Å. Since the covalent radius of germanium is about 0.2 Å smaller than the radius of tin (tin: 1.40 Å, Ge: 1.22 Å; Cotton & Wilkinson, 1968) we assume that germanium-nitrogen bond distances in analogous macrocyclic complexes are in the range 1.85 to 2.15 Å. The bond distance of 2.175 (3) Å therefore indicates weak bonding between germanium and N(1).

Fig. 3(a)-(c) shows the three possible formulations of the hemiporphyrazine system without charge separation. In (b) and (c) the system is conjugated.

The differences in the Ge–N bond and the non-equal bond lengths of the bridging nitrogen atoms to the pyridine and isoindole system favour formula (a). However, the shortening of the C(9)–N(3) [1·389 (4) Å] bond in the isoindole system (C–N single bond 1·44 Å, C–N partial double bond 1·35–1·33 Å; *International Tables for X-ray Crystallography*) cannot be explained by formula (a). On the other hand a value near to that of a partial double bond can be derived from formulae (b) and (c). (Mean bond lengths are shown in Table 4.)

A comparison with the analogous phthalocyanine system (Fischer, Templeton, Zalkin & Calvin, 1971) shows some difference in the pyrrole and benzene moieties and indicates less conjugation in the hp-system. A superposition of formulae (a)-(c) with four

Fig. 1. A stereoscopic view of the molecular structure (Johnson, 1965). The ellipsoids enclose 50% probability of thermal motion, hydrogen positions are represented by spheres of constant weight.

resonance forms of type (a) and one of type (b) and (c) leads to a bond order of 1.2 for the C(5)–N(2) bond and for the C–N bonds in the isoindole system and of

1.8 for the C(6)-N(2) bond. These bond orders are in accordance with the bond lengths observed. A small ring current should therefore occur in the hp-system

Fig. 2. Bond lengths and angles in the hemiporphyrazine system.

Fig. 3. Possible resonance forms of the hemiporphyrazine system.

Fig. 4. A stereoscopic view of the molecular packing.

Table 4. Mean bond lengths in the isoindole system

	Ge-hp	Mg-phthalocyanin
$N-C_{\alpha}$	1.387 (5)	1.367 (4)
$C_{\alpha}-C_{\beta}$	1.476 (5)	1.456 (5)
C-Cbenz	1.373 (6)	1.394 (5)
	1.387 (6)	1.391 (5)
	1.374 (7)	1.377 (5)

because of the participation of the conjugated forms (b) and (c).

All intermolecular distances are significantly greater than the van der Waals distances. Apart from aesthetic considerations there are no special features in the molecular packing (Fig. 4).

The authors thank Dr Wöhrle and his co-workers for supplying the crystals and the Deutsche Forschungsgemeinschaft for financial support.

References

- COTTON, F. A. & WILKINSON, G. (1968). Anorganische Chemie. Berlin: VEB Deutscher Verlag der Wissenschaften.
- Cullen, D. L. & Meyer, E. F. Jr (1973). Acta Cryst. B29, 2507-2515.
- ESPOSITO, J. N., SUTTON, L. E. & KENNEY, M. E. (1967). Inorg. Chem. 6, 1116–1120.
- FISCHER, M. S., TEMPLETON, O. H., ZALKIN, A. & CALVIN, M. (1971). J. Amer. Chem. Soc. 93, 2622–2628.
- International Tables for X-ray Crystallography (1962). Birmingham: Kynoch Press.
- JOHNSON, C. K. (1965). *ORTEP*. Report ORNL-3794, Oak Ridge National Laboratory, Oak Ridge, Tennessee.
- MEYER, G. & WÖHRLE, D. (1972). Private communication. Siemens AED-Handbuch (1966). Eg-Anleitung 4850, Karlsruhe.

SPEAKMAN, J. C. (1953). Acta Cryst. 6 784-791.

X-RAY system (1972). Technical Report TR-192, Computer Science Center, Univ. of Maryland.

Acta Cryst. (1974). B30, 2848

Dinitratobis(antipyrine)zinc(II)

PAR CLAUDE BRASSY ET MARIE-CHRISTINE MICHAUD

Laboratoire de Chimie Structurale, Faculté des Sciences, 40 Avenue du Recteur Pineau, 86022-Poitiers, France

et Jean Delettré et Jean-Paul Mornon

Laboratoire de Minéralogie-Cristallographie, associé au CNRS, Université de Paris VI, Tour 16, 4 Place Jussieu, 75230-Paris Cedex 05, France

(Reçu le 10 avril 1974, accepté le 14 mai 1974)

 $Zn(C_{11}ON_2H_{12})_2(NO_3)_2$, tetragonal, $P4_1$, $a=b=9.94\pm0.02$, $c=25.50\pm0.10$ Å, $D_c=1.492\pm0.012$, $D_m=1.48\pm0.02$, $\mu=15$ cm⁻¹ (Cu K\alpha), Z=4, |F(000)|=1168, M=566, R=0.107 for 2179 unweighted reflexions. The structure, solved by the heavy-atom method, contains $Zn(antipyrine)_2(NO_3)_2$ in van der Waals contacts. The zinc atom is surrounded by two oxygen atoms from two similar antipyrine molecules and by four oxygen atoms belonging to one symmetric and one unsymmetric bidentate NO_3^- .

Introduction

Les cristaux sont préparés selon la méthode décrite par Souchay (1940), en chauffant légèrement dans les proportions stoechiométriques, de l'antipyrine et du nitrate de zinc. Des recristallisations dans l'alcool amylique fournissent des petits cristaux incolores, transparents, ayant la forme de petites pyramides à